Analytic and Numerical Ab Initio Analysis of Hydrogen Bilayers

by Tommy on 24/02/2017

This should help sort out the great hydrogen metallization war before it escalates further.

https://arxiv.org/abs/1702.06575

Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition, Andrzej Biborski, Andrzej P. Kądzielawa and Józef Spałek (21 February 2017)

We analyze the pressure-induced metal-insulator transition in a two-dimensional vertical stack of H2 molecules in x-y plane, and show that it represents a striking example of the Mott-Hubbard-type transition. Our combined exact diagonalization approach, formulated and solved in the second quantization formalism, includes also simultaneous ab initio readjustment of the single-particle wave functions, contained in the model microscopic parameters. The system is studied as a function of applied side force (generalized pressure), both in the H2-molecular and H-quasiatomic states. Extended Hubbard model is taken at the start, together with longer-range electron-electron interactions incorporated into the scheme. The stacked molecular plane transforms discontinuously into a (quasi)atomic state under the applied force via a two-step transition: the first between molecular insulating phases and the second from the molecular to the quasiatomic metallic phase. No quasiatomic insulating phase occurs. All the transitions are accompanied by an abrupt changes of the bond length and the intermolecular distance (lattice parameter), as well as by discontinuous changes of the principal electronic properties, which are characteristic of the Mott-Hubbard transition here associated with the jumps of the predetermined equilibrium lattice parameter and the effective bond length. The phase transition can be interpreted in terms of the solid hydrogen metallization under pressure exerted by e.g., the substrate covered with a monomolecular H2 film of the vertically stacked molecules. Both the Mott and Hubbard criteria at the insulator to metal transition are discussed.

This work is of extremely high quality.

lifeform@charter.net

Comments are closed.