MADMAX Dark Matter Axion Haloscope White Paper Released

by Tommy on 18/04/2017

There were quite a few breakthroughs on the ArXiV last night, which I don’t have time to cover right now, but I found this axion haloscope white paper on Scholar that needs to be fast tracked. You know, because of ‘gravitational axions’.

A new experimental approach to probe QCD Axion Dark Matter in the mass range above 40μeV, P. Brun, A. Caldwell, L. Chevalier, G. Dvali, E. Garutti, C. Gooch, A. Hambarzumjan, S. Knirck, M. Kramer, H. Kruger, T. Lasserre, A. Lindner, B. Majorovits C. Martens, A. Millar, G. Raffelt, J. Redondo , O. Reimann, A. Schmidt, F. Simon, F. Steffen, G. Wieching, The MADMAX Interest Group (20 March 2017)

Axions represent a class of particles that emerge in theoretical models explaining several mysteries of high-energy particle physics and cosmology. They explain the absence of CP violation in the strong interaction, provide dark matter candidates, and can be responsible for inflation and structure formation in the early universe. Several searches for axions and axion-like particles have constrained the parameter space over the last decades, however, no hints of axions have been found. The mass range of 1–1000 μeV remains highly attractive and well motivated region for dark matter axions. In this white paper we present a description of a new experiment based on the concept of a dielectric haloscope for the search for dark matter axions in the mass range 40–400 μeV. The experiment, called MADMAX, will consist of several parallel dielectric layers, whose separations can be adjusted and are placed in a strong magnetic field. This would lead to the emission of axion induced electromagnetic waves in the 10–100 GHz domain, with the frequency given by the axion mass.

Now all I have to do is read this white paper.

The race to the gravitational axion is on!

Comments are closed.