Possible Alkali Doped Organic Polymer Chain Superconductivity

by Tommy on 22/03/2017

I don’t know what to make of this, but potassium sounds about right for this kind of thing.


Superconductivity above 120 kelvin in a chain link molecule, Ren-Shu Wang, Yun Gao, Zhong-Bing Huang and Xiao-Jia Chen (20 March 2017)

The search for new superconducting compounds with higher critical temperatures Tcs has long been the very heart of scientific research on superconductivity. It took 75 years for scientists to push the Tc above liquid nitrogen boiling temperature since the discovery of superconductivity. So far, the record high Tc of about 130 K at atmosphere pressure was reported in some multilayer Hg(Tl)-Ba-Ca-Cu-O compounds. Meanwhile, sulfur hydride system holds the highest Tc of around 200 K at high pressure of about 150 GPa. While keeping these records for superconductivity, either the toxicity of these superconductors or the requirement of extreme pressure condition for superconductivity limits their technology applications. Here we show that doping a chain link molecule − p-terphenyl by potassium can bring about superconductivity at 123 K at atmosphere pressure, which is comparable to the highest Tc in cuprates. The easy processability, light weight, durability of plastics, and environmental friendliness of this kind of new superconductor have great potential for the fine-tuning of electrical properties. This study opens a window for exploring high temperature superconductivity in chain link organic molecules.

See also: https://arxiv.org/abs/1703.05804

Superconductivity at 43 K in a single C-C bond linked terphenyl, Ren-Shu Wang, Yun Gao, Zhong-Bing Huang and Xiao-Jia Chen (16 March 2017)

Organic compounds are promising candidates to exhibit high temperature or room temperature superconductivity. However, the critical temperatures of organic superconductors are bounded to 38 K. By doping potassium into p-terphenyl consisting of C and H elements with three phenyl rings connected by single C-C bond in para position, we find that this material can have a superconducting phase with the critical temperature of 43 K. The superconducting parameters such as the critical fields, coherent length, and penetration depth are obtained for this superconductor. These findings open an encouraging window for the search of high temperature superconductors in chain link organic molecules.

From now on I’m only covering the Arxiv on Tuesdays. I was a bipolaron man way back.

I haven’t dabbled too much into it lately. Some of the more extreme bipolaron theories are occasionally considered crackpot, or at least historically so. Here, density counts.

I will have to take it at face value.


Comments are closed.