Quasi 1D Gapped Topological Surface States in Bi on InSb

by Tommy on 1/05/2017

I’ve been trying desperately to get back to my first true science love – bismuth.

It wasn’t my first science. It was the first where I could openly claim some fame.

And after all these years I am still trying to figure it all out, even as the expert on it.


Spin-polarized quasi 1D state with finite bandgap on the Bi/InSb(001) surface, J. Kishi, Y. Ohtsubo, K. Yaji, A. Harasawa, F. Komori, S. Shin, J. E. Rault, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, M. Nurmamat, H. Yamane, S. Ideta, K. Tanaka and S. Kimura (18 April 2017)

One-dimensional (1D) electronic states were discovered on 1D surface atomic structure of Bi fabricated on semiconductor InSb(001) substrates by angle-resolved photoelectron spectroscopy (ARPES). The 1D state showed steep, Dirac-cone-like dispersion along the 1D atomic structure with a finite direct bandgap opening as large as 150 meV. Moreover, spin-resolved ARPES revealed the spin polarization of the 1D unoccupied states as well as that of the occupied states, the orientation of which inverted depending on the wave vector direction parallel to the 1D array on the surface. These results reveal that a spin-polarized quasi-1D carrier was realized on the surface of 1D Bi with highly efficient backscattering suppression, showing promise for use in future spintronic and energy-saving devices.

And after 30 years it’s long past the time that I write up what I know about this subject again.

A whole bunch of metal chalcogenides keep stealing my fire.

I suppose I had better get started on it.

Update: I’m almost anxious enough to start. That’s really the only way I can write.

To your horror you can watch it online. It might not end up looking anything like this though.



Comments are closed.