The Cosmological Constant is Quantum Vacuum Energy Density

by Tommy on 19/05/2017

And it self gravitates.

I haven’t really been too concerned about the dark energy problem since it is outside of my area of expertise and the majority of the matter is still missing. I can only claim the known microwave (cosmic QCD gravitational) axion for Vera Rubin and Helen Quinn. However, it appears now the obvious has been quantified. Or at least mathematicalized. Let’s just say it has been formalized.

I am now officially interested.

How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe, Qingdi Wang, Zhen Zhu and William G. Unruh, Phys. Rev. D 95, 103504 (11 May 2017), doi:10.1103/PhysRevD.95.103504

We investigate the gravitational property of the quantum vacuum by treating its large energy density predicted by quantum field theory seriously and assuming that it does gravitate to obey the equivalence principle of general relativity. We find that the quantum vacuum would gravitate differently from what people previously thought. The consequence of this difference is an accelerating universe with a small Hubble expansion rate H ∝ Λe−βG√Λ → 0 instead of the previous prediction H = √8πGρvac/3 ∝ √GΛ2 → ∞ which was unbounded, as the high energy cutoff Λ is taken to infinity. In this sense, at least the “old” cosmological constant problem would be resolved. Moreover, it gives the observed slow rate of the accelerating expansion as Λ is taken to be some large value of the order of Planck energy or higher. This result suggests that there is no necessity to introduce the cosmological constant, which is required to be fine tuned to an accuracy of 10−120, or other forms of dark energy, which are required to have peculiar negative pressure, to explain the observed accelerating expansion of the Universe.

It looks like I called this correctly at the beginning of the year. So quantum cosmology it is.

Converting quantum vacuum energy into active matter is how it is most efficiently dissipated.

Comments are closed.