Topological Insulator Surface States Disentangled from the Bulk

by Tommy on 17/01/2017
Magneto Infrared Spectroscopy Faraday Rotation Topological Insulators

Magneto Infrared Spectroscopy Faraday Rotation Topological Insulators

Faraday rotation due to surface states in the topological insulator (Bi1−xSbx)2Te3, Yinming Shao, Kirk W. Post, Jhih-Sheng Wu, Siyuan Dai, Alex J. Frenzel, Anthony R. Richardella, Joon Sue Lee, Nitin Samarth, Michael M. Fogler, Alexander V. Balatsky, Dmitri E. Kharzeev and D. N. Basov, Nano Lett. (29 December 2016)

Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)2Te3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

These the million dollar takeaway quotes.

This hypothesis has implications for the finite frequency response of a TI: a resonance mode can be anticipated in infrared frequencies, offering yet another opportunity to investigate the condensed matter manifestations of phenomena discussed in high energy physics. The search for such resonances remains a challenge for future theoretical and experimental studies of 3D-TIs as well as Dirac/Weyl semimetals in magnetic field.

Such separated n- and p-type Dirac fermions paves the way for the observation of exotic quantum phenomena in TI, such as topological magneto-electric effect and topological exciton condensation.

In other words, this paves the way to solid state axion production, emission and detection.

Comments are closed.